

A Discontinuous Galerkin Method for the M₁ Model of Radiative Transfer Muhammad Shamim, Cory Hauck, Yulong Xing Computational Mathematics Division, Oak Ridge National Laboratory

Summary

- A model for energy transfer via photon radiation is required for several applications
- Full radiation transfer equations are too expensive to solve in most cases
- Research has been devoted to finding simpler models
- The M₁ model is one such simplified model which has been recently studied
- We developed a first order implicit-explicit (IMEX) scheme to solve the model by discontinuous Galerkin (DG) methods
- We tested the model with the shadow cone problem [1]

Background

- M₁ model is a simplified model which preserves properties of full radiative transfer equations
- $\partial_t E + \nabla_m \cdot F = -c\sigma_n (E C)$ E – Energy, F – Flux, T – Material Temperature, P – Radiative Pressure, σ_a – Emission Cross Section, σ_t – Total Cross Section,

$$\partial_t E + \nabla_x \cdot F = -c\sigma_a (E - a)$$
$$\partial_t F + c^2 \nabla_x \cdot P(E, F) = -c\sigma_a$$
$$\circ \sigma \sigma^2 (E - a)$$

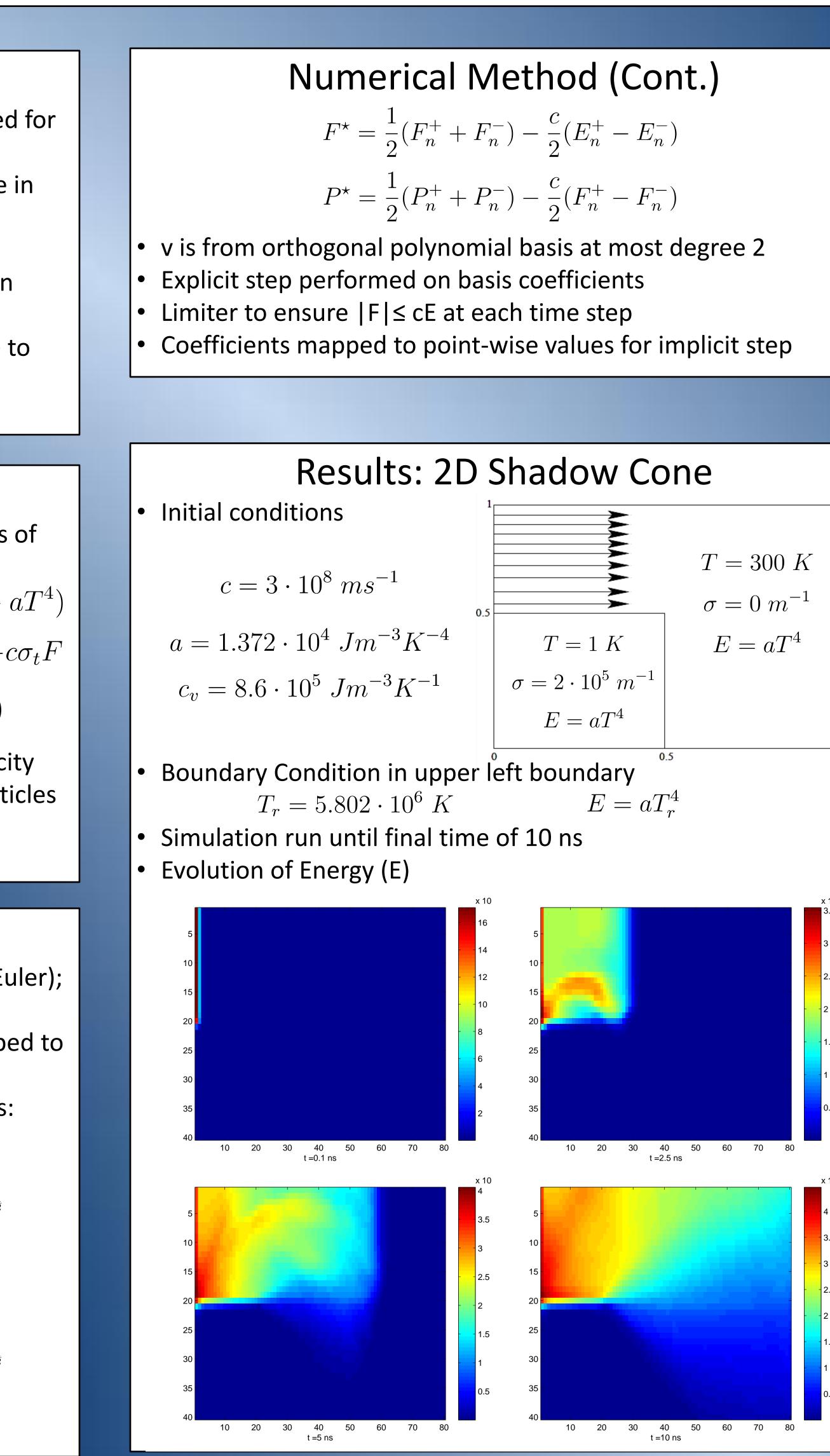
$$\partial_t T = \frac{c \sigma_a}{c_v} (E - aT^4)$$

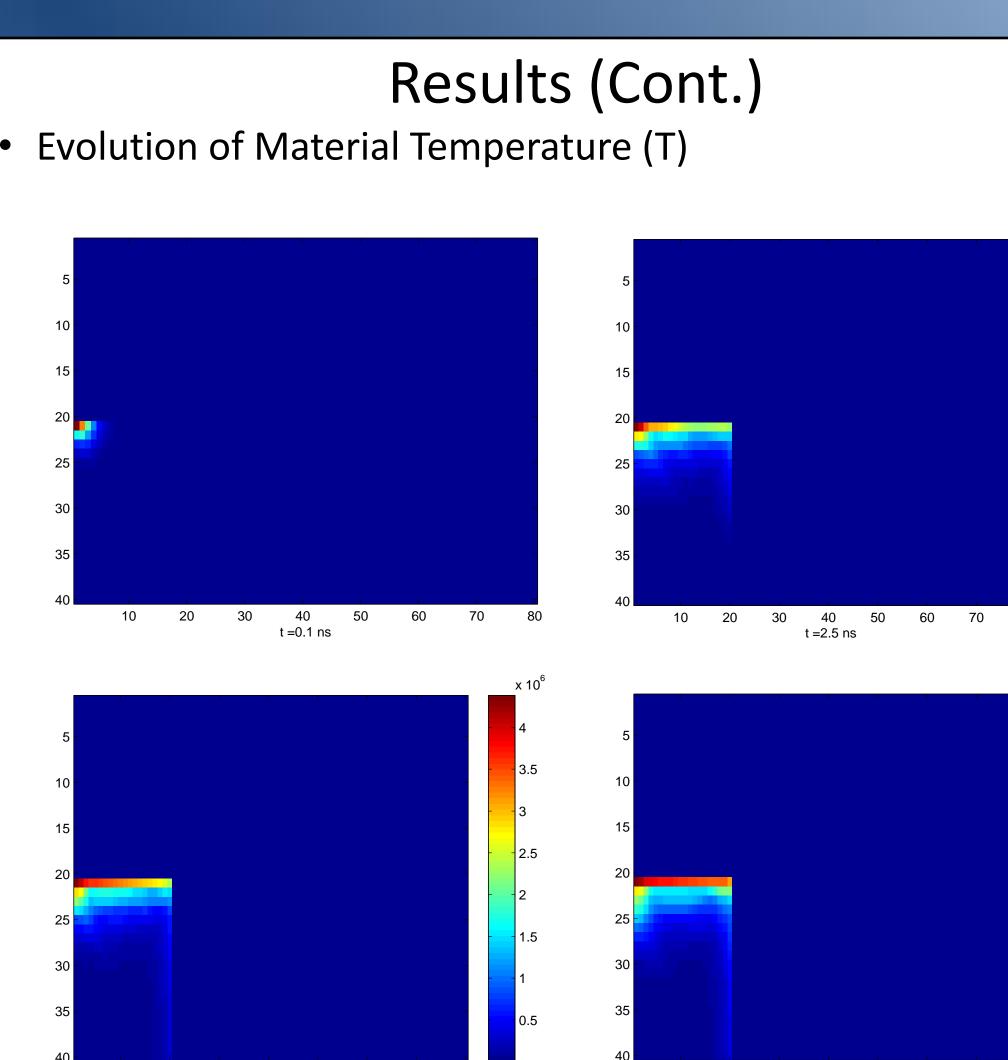
- a Radiation Constant , c Speed of Light, c_v Heat Capacity
- Challenge is to ensure solution satisfies $|F| \le cE$, since particles can't move faster than light
- Model is ill-posed when condition is violated

Numerical Method

- IMEX Scheme: source terms treated implicitly (Backward Euler); flux terms treated explicitly (Forward Euler)
- Implicit step performed on point-wise values; values mapped to coefficients in polynomial basis
- DG Formulation (in two dimensions) to update coefficients:

$$\begin{split} \iint_{I_k} \partial_t E^h \, v \, \mathrm{d}x \mathrm{d}y &= \iint F^h \, \partial_x v \, \mathrm{d}x \mathrm{d}y - \int F^\star v \mathrm{d}y \Big|_{x_{k+\frac{1}{2}}} + \int F^\star v \mathrm{d}y \Big|_{x_{k-\frac{1}{2}}} \\ &+ \iint F^h \, \partial_y v \, \mathrm{d}y \mathrm{d}x - \int F^\star v \mathrm{d}x \Big|_{y_{k+\frac{1}{2}}} + \int F^\star v \mathrm{d}x \Big|_{y_{k-\frac{1}{2}}} \\ &\iint_{I_k} \partial_t F^h \, v \, \mathrm{d}x \mathrm{d}y = \iint P^h \, \partial_x v \, \mathrm{d}x \mathrm{d}y - \int P^\star v \mathrm{d}y \Big|_{x_{k+\frac{1}{2}}} + \int P^\star v \mathrm{d}y \Big|_{x_{k-\frac{1}{2}}} \\ &+ \iint P^h \, \partial_y v \, \mathrm{d}y \mathrm{d}x - \int P^\star v \mathrm{d}x \Big|_{y_{k+\frac{1}{2}}} + \int P^\star v \mathrm{d}x \Big|_{y_{k-\frac{1}{2}}} \end{split}$$





t =10 ns

Conclusion

- Goals to implement in future work:
- Less diffusive numerical flux

30 40 t =5 ns

• Higher order IMEX method

References

- Berthon, Charrier, and Dubroca. An HLLC Scheme to Solve the ,[1' *M*₁ *Model of Radiative Transfer in Two Space Dimensions.* J SCI COMPUT (2007)
- Olbrant, Hauck, and Frank. A Realizability-Preserving [2] Discontinuous Galerkin Method for the M₁ Model of Radiative *Transfer.* J COMPUT PHYS (2012)

Acknowledgements

This study was funded by the US Department of Energy Office of Science, through the SULI Program. Special thanks to Cory Hauck and Yulong Xing for their assistance.

